


- 3. How do anti-GM-CSF antibodies induce acquired Pulmonary alveolar proteinosis (PAP)?
- 4. Is there any role of serum or BAL GMCSF level in the case of PAP?
- 5. What would be the counseling plan for the family of case: III2?

Surfactant related disorders: Possible Genotype -phenotype corelation

Age of presentation

Genes related to surfactants with their function and respected phenotypes

Gene/Locus/ Location / Phenotype	Clinical spectrum/s (MOI)/ onset age	Phenotype OMIM no.	Gene function
SFTPB / 2p11.2/ Surfactant metabolism dysfunction, pulmonary, 1 (SMDP1)	ILD, pulmonary alveolar proteinosis (PAP), desquamative interstitial pneumonitis (DIP), or cellular nonspecific interstitial pneumonitis (NSIP)/ AR/ neonatal	265120	Pulmonary-associated surfactant protein B (SPB), as amphipathic proteins enhance stability and spreading
SFTPC/8p21.3/ SMDP2	ILD, PAP RDS in prematurity/ AD/infancy, child adult	610913	Pulmonary-associated surfactant protein C (SPC), as highly hydrophobic proteins work on the peripheral air spaces.
ABCA3/16p13.3/ SMDP3	RDS/ AR/ Neonatal	610921	Help in synthesis by catalyses the ATP-dependent transport of phosphatidylcholine and phosphoglycerol from the cytoplasm into lamellar bodies
CSF2RA/ Xp22.33 / SMDP4	PAP / X linked/ Infant, young child	300770	Receptor for granulocyte-macrophage colony-stimulating factor. Crucial part of GM-CSF signaling pathway
CSF2RB/22q12.3/ SMDP5	PAP/ AR /adolescent, adult	138981	Differentiate monocytes into macrophages
SFTPA1/10q22.3/ Interstitial lung disease 1 (ILD-1)	ILD, RDS, Idiopathic Interstitial Pneumonia, Idiopathic pulmonary fibrosis / AD, AR / adult	619611	Related to alveolar innate immunity, and control inflammation (dual mode function) Also contributes to lower the surface tension
SFTPA2/ 10q22.3/ ILD-2	ILD, RDS, Idiopathic pulmonary fibrosis /AD/ adult	178500	Innate immunity of alveoli lower the surface tension 138981
MUC5B/ 11p15.5/ Pulmonary fibrosis, idiopathic, susceptibility to	ILD, and Extrinsic Allergic Alveolitis/AD/adult	178500	Gel-forming mucin in mucus
SFTPD/ 10q22.3 /	/Not defined	178635	innate immunity and surfactant turnover

Pulmonary alveolar proteinosis (PAP): surfactant & its metabolic products accumulate within alveoli, leading to gaseous exchange malfunction. Types of PAP: **Defective production:** Hereditary mutations in surfactant proteins.

Defective clearance: Dysfunction of alveolar macrophage by Auto-immune with anti-GM-CSF antibodies (Most common ~90% PAP cases), hereditary mutations in receptor & associate proteins of granulocyte macrophage-colony stimulating factor (High serum & BAL level of GMCSF), hematological disorders and toxins **Investigation of choice**: bronchoalveolar lavage fluid (BALF) study, & **Gold standard:** Lung biopsy **(chILD)**

Counseling the family for case III:2- 1. Need phenotyping: Clinical details of proband and her parents; 2. Confirming the diagnosis: biochemical or histopathological & Molecular report, 3. Examination of case II:2 & her husband, & genotyping of case II:2 (If family carries the mutation/variant), 4. Follow up with the report and the option of antenatal testing need to be discussed with the family in case of significant findings. 5. Case II:2 must follow routine standard protocol also.

Thought Riveting:

- What are the sailent differences in fetal, infantile, and adult surfactant proteins?
- Is it clinically useful to thoroughly evaluate, & investigate for chronic lung disease in children with Isolated pectus excavatum deformity without skeletal dysplasia, & respiratory distress?
- How does COVID-19 affect surfactant metabolism?
- What could be the likely phenotype of GMCSF gene mutations in humans?
- Is there any possible-oxygen dependent locus control region for surfactant proteins?

arch