

From the desk of Editor

The genetic division of the Pediatric Department publishes a monthly newsletter for all Medical Professionals. The newsletter is related to genealogical parlance and is a deliberate attempt to enhance awareness of genetic disorders with recent updates.

Editorial Board

Chief Patron
Prof. Meenu Singh
(Executive Director)
Patron
Prof. Java Chaturvedi

Prof. Jaya Chaturvedi (**Dean academic**) **President** Prof. N. K. Bhat (**HOD**)

Editor

Dr. Prashant Kumar Verma
Asso. Editor
Dr. Manisha Naithani
Assi. Editors

Dr. Vinod Kumar

Dr. Pooja Bhadoria

Author: Prashant Kumar Verma¹,

Department of Pediatrics, Chairperson of Medical Genetic division, AIIMS Rishikesh, Uttarakhand, India

DOI: 10.13140/RG.2.2.29603.05920

Reviewer: Dr. Raksna Ranjan,

¹Department of Pediatrics, AIIMS Bathinda, Punjab, India

Progeroid Syndromes Like (PSL)-III / LAMIN A/C related disorders/ Mandibuloacral dysplasia type A lipodystrophy (MADA)

Acro-osteolysis

- Acro: tip/end; and osteolysis: bone resorption
- Radiologically diagnosed as distal phalangeal and clavicle osteolysis
- Etiologies: congenital or acquired (external or internal causes)
- Swelling (Clubbing) or atrophic changes in adjacent tissues
- Classification: (A) Based on radiological changes noticed in the bone (three types): terminal tuft (longitudinal type), midshaft (transverse type), and both together (longitudinal & transverse bone reabsorption); (B) Anatomical involvement: Localize versus systemic, single digit versus multiple, upper limb versus lower limb, or both

Insight:

- 1. Why is it called mandibuloacral dysplasia?
- 2. What are the principal differences between MADA and Hutchinson-Gilford progeria?
- 3. How would you counsel the family for Case IV: 2?
- 4. What is the possible explanation for acro-osteolysis?
- 5. How would you approach a case of acro-osteolysis?

Plausible tenets:

- Osteolysis: over activity of osteoclasts leads to the destruction of bone matrix over time.
- Osteolysis with Laminopathies: Probably by significantly higher levels (approximately 4.7-fold) of the active enzyme forms of MMP9 (metalloproteinases).
- OMIM search shows 37 entries by "osteolysis" with clinical synopsis, 33 entries with "acro-osteolysis OR acroosteolysis," and seven entries besides laminopathies (Mandibuloacral Dysplasia with Type A Lipodystrophy, Restrictive Dermopathy 2, MADA, Lipodystrophy, Familial Partial, Type 2; FPLD2, & Hutchinson-Gilford progeria) with "clavicle AND acro-osteolysis OR acroosteolysis".

Syndromes with clavicle anomaly AND acro-osteolysis OR acroosteolysis:

No.	Phenotype	MIM No.	Gene / Function / MOI	Additional key findings
1.	Pycnodysostosis [from Greek: πυκνός	#265800	Cathepsin K gene (CTSK)/	Growth hormone therapy in selected
	(puknos) meaning "dense", Dys ("defective"),		cysteine proteinases in	cases
	and ostosis ("condition of the bone"]		osteoclast cells/ AR	
2.	Mandibuloacral Dysplasia With Type B	#608612	ZMPSTE24/ an endoprotease,	Renal involvement, skin nodules
	Lipodystrophy; MADB		conversion of prelamin A/AR	
3.	Multicentric Carpotarsal Osteolysis	#166300	MAFB/ dual function	CKD, JRA like radiological pictures
	Syndrome; MCTO		transcription factors/ AD	
4.	Hypertrophic Osteoarthropathy, Primary,	#259100	HPGD/ 15-	Marfanoid habitus, furrowing of the
	Autosomal Recessive, 1; PHOAR1		hydroxyprostaglandin	forehead, large clavicle
			dehydrogenase (degradation of	
			PGs) / AR	
5.	Osteosclerotic Metaphyseal Dysplasia;	#615198	LRRK1/ maturation of	Osteosclerosis of clavicle & other
	OSMD		osteoclasts/ AR	bones, raised AST
6.	Cleidocranial Dysplasia 1; CLCD1	#119600	RUNX2/ Transcription factor,	Not a true acro-osteolysis
			maturation of osteoblasts/ AD	
7.	Melnick-Needles Syndrome; MNS	#309350	FLNA/ interacting filaments at	Short clavicles, cleft palate, CHD
			various level/ XLD	

- Other more specific head-toe findings with MADA **besides common laminopathies phenotypes include** wormian bones, wide cranial sutures, micrognathia, mandibular hypoplasia, progressive osteolysis of the distal phalanges and clavicles (acroosteolysis), hypoplastic clavicles, **hypomorhic progeroid phenotypes**, and restricted joint mobility.
- Overlapping phenotypic syndromes: Hajdu-Cheney syndrome (**NOTCH2**), Hallermann-Streiff syndrome (?), Gottron type acrogeria (?), Werner syndrome (**RECQL2**)
- Matrix MetalloProteinase 9(MMP9), Gelatinase B (GELB): a zinc metalloprotease, helps in leukocyte migration besides having proteolytic enzymes activities against extracellular matrix proteins (PubMed: 1480034, 2551898, and 12879005), like bone matrix resorption by cleavage of various collagen fibers.
- Phenotype: **Metaphyseal anadysplasia 2** (**Ana = prefix meaning return**), (**MOI-AR**), an early-onset metaphyseal dysplasia with spontaneous regression with age: infantile genu varum (bowlegs) with scoliosis, and metaphyseal fraying of the distal femurs and distal tibias. **Post-toddlerhood**, all abnormalities start to resolve themselves without affecting the final height.

Counsel the family for antenatal diagnosis of case IV: 2- At 29 weeks, without abnormalities in all previous antenatal investigations, we need to re-evaluate for specific anomalies as directed by an expert. Phenotyping of the proband and all other affected family members can help to reach a clinical impression. Possibilities for disease in the fetus cannot be discussed during counseling without a confirmed diagnosis; it can significantly affect fetal and maternal health. Additionally, discussion on possibilities without evidence can have consultation irregularities and legal implications.

Thought Riveting:

- Is aging a slowly adaptive cellular behavior against the surrounding environment of the cell?
- How could aging be reversed in a specific environment, specifically in the absence of mutagenic or extreme environmental situations?
- Can specific viral infections accelerate or deaccelerate the aging process?
- What is the effect of a high MMP9 levels on the cellular level in other tissues? Is there any role for a MMP9 inhibitor (CAS number 1177749-58-4) or Mangiferin?
- Can augmentation of the **ZMPSTE24** protein rescue the LMNA-associated phenotype?