

All India institute of Medical Science Rishikesh (AIIMSR) Volume 6, Issue 3, March 2025



 $^{1}$  Department of Pediatrics, Chairperson of Medical Genetic division, AIIMS Rishikesh, Uttarakhand, India

Reviewer: Dr. Raksha Ranjan

1 Department of Pediatrics, AIIMS Bathinda, Punjab, India

DOI: 10.13140/RG.2.2.29800.58888

Neurogenetics - XIX - Dysmorphic/ Intellectual Disability/ X-Linked / Phosphatidylinositol 4,5-bisphosphate-5-Phosphatase (OCRL)spectrum disorder; Including Lowe & Dent disease2



## **Editorial Board**

**Chief Patron** 

**Prof. Meenu Singh** 

(Executive Director)

**Patron** 

Prof. Jaya Chaturvedi

(Dean academic)

**President** 

Prof. N. K. Bhat

(HOD)

**Editor** 

Dr. Prashant Kumar Verma

Asso. Editor

Dr. Manisha Naithani

Assi. Editors

Dr. Latika Chawla

Dr. Pooja Bhadoria

Dr. Vyas Radhaur

#### From the desk of Editor

The genetic division of the Pediatric Department publishes a monthly newsletter for all Medical Professionals. The newsletter is related to genealogical parlance and is a deliberate attempt to enhance awareness of genetic disorders with recent updates.



# Possible Mechanism of OCRL phenotype spectrum



### **Insight:**

- 1. What is the potential molecular process leading to OCRL spectrum disorders?
- 2. What are the various phenotypes of the OCRL spectrum?
- 3. How would you counsel the family for **Case III: 5**?
- 4. Is there any role of growth hormone (**GH**) in the management of Lowe syndrome?
- 5. How would you counsel a X-liked disease with variable phenotypic penetration with an asymptomatic mother with negative somatic cell genotype for a disease?

#### Plausible tenets:

Gene: OCRL (Xq26.1) Genomic coordinates (GRCh38) X:129,540,259-129,592,556 (from NCBI)

- Inositol polyphosphate 5-phosphatase (endosomal trafficking regulator, a member of the inositol-5-phosphatase family) regulates the availability of phosphatidylinositol 4,5-bisphosphate to endosomes by catalying the hydrolysis of the 5-position phosphate of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and (PtdIns(3,4,5)P3). Which leads to defects in the transport of various proteins and lipids.
- It has been reported to be involved in primary cilia formation, phagocytosis,  $\alpha$ -actinin signaling, and proper plasma membrane function.
- Possible Hypothesis for different tissue penetration and severity depends upon tissue-specific other housekeeping functions.
- **Gene: 52,713 bases (normal orientation) variants**; 10 transcripts, 223 orthologues, and 13 paralogues.
- Transcript: **Exons & Coding exons: 24**; length of **5,173 bps**, 28 domains, and features, Protein has 901 amino acids, with a molecular weight of 104205 Da.

Clinical phenotypes: Lowe syndrome & Dent disease 2

| chinear phenotypes zowe synarome a zent assease z |                                                  |                                    |                                                                              |
|---------------------------------------------------|--------------------------------------------------|------------------------------------|------------------------------------------------------------------------------|
| Organ                                             | Disease                                          | Frequency of Phenotype in cases    | Management                                                                   |
| Eye                                               | B/L dense Congenital cataracts & impaired vision | Almost                             | Cataract removal**, glaucoma treatment                                       |
|                                                   | (< 20/100)                                       |                                    | Personalized education programme                                             |
|                                                   | Infantile glaucoma                               | Half cases                         | Need six monthly monitoring                                                  |
| Neurological                                      | Central Hypotonia - Feeding issue, joint         | Almost                             | NG feeding, GERD treatment, and scoliosis standard treatment                 |
|                                                   | hypermobility                                    |                                    |                                                                              |
|                                                   | Seizure                                          |                                    | Antiepileptic                                                                |
|                                                   | DTR -Absent                                      | Almost                             |                                                                              |
|                                                   | Intellectual differences                         | Almost but variable*               |                                                                              |
|                                                   | Behavior problem                                 | Variable                           | Behavioral therapy                                                           |
| Renal                                             | Chronic and progressive Proximal tubular         | All cases in late infantile period | Replacement of lost mineral, and Vit D3, observe for secondary complications |
| (Dent disease)                                    | dysfunctions#                                    |                                    |                                                                              |
|                                                   | Glomerulosclerosis (1st decade)                  |                                    | Dialysis                                                                     |
|                                                   | CKD (2nd to 4th decade)                          |                                    | Renal transplantation                                                        |

<sup>\*\*</sup> They cannot tolerate artificial lens implants (Glaucoma), and Corneal contact lenses (corneal keloid)

Rx: Annually follow up. Growth failure is a secondary manifestation due to multifactorial reason. In selected cases, GH could be use with managing all other complications.

**Principal differences in Dent disease and Lowe syndrome**: Lowe syndrome has mild spectrum with predominantly proximal renal tubular dysfunction; all renal pathological changes appear 2-4 decades late; females usually do not develop CKD. Only below average to mild MR, behavior abnormality, and mild ocular nuclear density.

# Types of dent disease (X-linked hypercalciuric nephrolithiasis)

Type 1: CLCN5 related disorders spectrum/ Dent disease complex (Xp11.23)
Type 2: OCRL (Xq26.1)usually a mild phenotype of Lowe syndrome

#### Key counselling facts related to "X-liked disease" with variable phenotypic penetration

Prime mover: study the statistical data (SD) of denovo mutation & germ line mutation for a particular phenotype of a gene (for Lowe 32 % & 4.6% respectably), & SD of disease penetrance in both sex in the population

With Four Possible Outcomes

Y XY (25% Normal male\*\*\*)
X XX (25% Normal female\*\*\*)

XY (25% affected male)
XX (25% a heterozygous female with variable phenotype)

\*\*\* for that phenotype, # usually mild and late onset, depends upon gene product functions, for Lowe 95% start to develop mild progressive clinical features in second decades

In case of a lack of data for XX, it is better to say "We do not have exact figures but likely a mild & late onset phenotype with uncertainty to complete penetration."

Counsel the family for Case III: 5- In spite of asymptomatic parents and having a negative test for somatic mutations (in lymphocytes), there is always a risk to have a germline mutation in gametes (4.6% with Lowe syndrome) in all genetic disorders. So, in each pregnancy, the antenatal testing should be discussed with family. Case III:5 might have a pathological variant and need to test for asymptomatic disease-carrying variants because it is a medically actionable disease.

## **Thought Riveting:**

- What are the key differences between Dent disease and Fanconi renotubular syndromes?
- How does the inositol phosphate interact with a voltage-gated chloride ion channel?
- Will upregulating the Synaptojanin-1 ameliorate a few features of Lowe syndrome?
- Is endosomeopathy a new emerging group of cellular organelle dysfunction disorders?
- What could be the possible overlapping phenotypes of pathological variants of 'Ph Domain-Containing Endocytic Trafficking Adaptor (PHETA1/A2)', a strong possible interactor of OCRL?

<sup>\*</sup>APPROX: Severe (60%) > Mild to Moderate (20%) > Low Normal (20 %)

<sup>#</sup>Progressive proximal tubular dysfunctions (Fanconi syndrome-like) which lead to proteinuria (Low molecular weight type- indicating tubular function), renal tubular acidosis (RTA), and Ca (calcium/creatinine mg/mg >2 SD), PO4, Na, K, water, HCO3 wasting (secondary rickets), & aminoaciduria. Possible secondary complications of hypercalciuria: Nephrocalcinosis, Nephrolithiasis, and Hematuria