All India institute of Medical Science Rishikesh (AIIMSR) Volume 6, Issue 2, Feb 2025

-Rishi Vansh

Author: Prashant Kumar Verma¹, Dr. Man Singh Parihar²

¹ Department of Pediatrics, Chairperson of Medical Genetic division, AIIMS Rishikesh, Uttarakhand, India 2 Department of Pediatrics, Senior Resident, Pulmonology division, AIIMS Rishikesh, Uttarakhand, India Reviewer: Dr. Raksha Ranjan

1 Department of Pediatrics, AIIMS Bathinda, Punjab, India DOI: 10.13140/RG.2.2.17057.52324

Editorial Board Chief Patron Prof. Meenu Singh (Executive Director) Patron

Prof. Jaya Chaturvedi (Dean academic) President Prof. N. K. Bhat (HOD) Editor Dr. Prashant Kumar Verma Asso. Editor Dr. Manisha Naithani Assi. Editors Dr. Latika Chawla Dr. Pooja Bhadoria Dr. Vyas Radhaur

From the desk of Editor

The genetic division of the Pediatric Department publishes a monthly newsletter for all Medical Professionals. The newsletter is related to genealogical parlance and is a deliberate attempt to enhance awareness of genetic disorders with recent updates.

Pulmogenetics-XI - Syndromes associated with

Bronchiectasis / Syndromes overlap with CF /

Young's Syndrome

Insight:

- 1. Is the Young syndrome a CFTR gene spectrum disorders or atypical ciliopathy?
- 2. How to approach a case having recurrent infections (especially respiratory tract) with infertility with a normal baseline immunological and dysmorphology workup?
- 3. How would you counsel the Case III: 4 for infertility?
- 4. What are the key differences between various generations of NGS?
- 5. What are the steps of doing NGS (next-generation sequencing)?

Plausible tenets:

Approach: A case with recurrent infections (especially respiratory tract) with infertility with normal baseline immunological and dysmorphology workup Clinical phenotypes:

Features/ Diagnosis	Cystic fibrosis	Immotile -cilia syndrome	Young's Syndrome
Onset	Early	Early	Late
Gametogenesis	Normal	Normal	Normal
Vas deferens	Obstructive	Normal/ May be	Obstructive
Pancreatic Exocrine insufficiency	Yes /variable	Normal	Normal
Recurrent URTI	Yes/ variable	Yes	Yes
Recurrent LRTI	Yes/ variable	Yes	Yes
Bronchial biopsy	Inflammatory changes	Abnormal cilia	Inflammatory changes
Sweat Chloride test	Normal to high values	Normal	Normal

Overlapping conditions:

Bronchiectasis and nasal polyposis (BENP) OMIM No. 620984 (Gene WFDC2): recurrent infections (especially respiratory tract) with only FEMALE infertility with normal baseline immunological workup

Leptin deficiency or dysfunction (LEPD) OMIM No. 614962 (Gene LEP): recurrent infections (especially respiratory tract) with infertility (hypothalamic **hypogonadism**) with or without immunological dysfunction, **AND EARLY-ONSET SEVERE OBESITY**

X-linked congenital bilateral aplasia of the vas deferens (CBAVDX) OMIM No. 300985 (Gene ADGRG2): Obstructive azoospermia

Molecularly sequencing could be classified in three broad categories

Features / Generation sequencing	Frist	Second	Third / four
Number of sequencings	Single	Multiple & parallel	Multiple Single
High throughput data	No	Yes	Yes
Base pair fragment (Approx)	500-1 kb	50-500	300 kb to 10 ⁶
Short/Long/ultra long read sequencing	Short & SGS#	Short	Long-ultra
Cost per base pair for large data	Very costly	Costly	Cost effective
Can sequencing any part of genome	No	No	Yes
Error rate per base pair	Very low	Low	High
Molecular technique	Chain termination	*SBH, SBS, & RTS	@SSS by ZMW & BN
Examples	Sanger, Maxam & Gilbert	Illumina, Solexa, Ion torrent	Oxford Nanopore, PacBio

#SGS- Sanger based short-gun sequencing used for a large read, @SSS single-strand sequencing by (ZMW) zero-mode wavelength, and biological nanopore (BN). *SBH- sequencing by hybridization, SBS- sequencing by synthesis, RTS- reversible terminal sequencing

Four basic steps of doing NGS (next generation sequencing)

Key points/ Steps	First	Second	Third	Fourth
Name	Sample preparation	Library Preparation	Sequencing	Data analysis
Initial action	DNA isolation	Ligation of adaptor &	Shift the PCR product in flow	Quality check of Base calling (data
		Barcoding	cells	Acquisition)
Further actions	Quality check	1. Size selection	Massive Parallel sequencing of	1. Read alignment
		2. Amplification	PCR products	2. Variant calling
		3. Purification		3. Variant annotation
		4. Quality check		
Time	4 to 24 hrs.	24 hrs.	1-11 days*	1-11 days*

*Depends upon system, data and technique

<u>Counsel the family for Case III: 4</u>- After completing the basic workup for infertility, the management plan could be the microsurgical process, which has a high success result for obstructive causes. Because common genetic diseases can present with a rare and unusual phenotype, NGS-based tests can be planned with proper counselling for their yielding and limitation even if there is a lack of guidelines after doing a literature review.

Explanations for mismatch between genotype & phenotype – final expression of a single gene depends upon various factors from mRNA to protein synthesis, and post synthesis various secondary modification processes. Besides that, RNAs, and proteins interact with each other more than what we know even at present knowledge. In our life span, protein function and even gene expression are continuously influenced by external genetic environment (metagenomics), internal environment (stress-induced mutagenesis) and physical factors (temperature, nutrients, UV light, microfibers and toxins).

<u>Thought Riveting:</u>

- What is the impact on CFTR protein structure and function with the 5T allele of intron 8?
- Meter Can the 12TG-5T-470V haplotyping be used as a first-line screening tool for obstructive azoospermia?
- Is Young's syndrome an environmental disorder because of poor hygiene? How is mercury exposure relate to the recurrent sinopulmonary infections and later obstructive azoospermia?
- Could Elexacaftor/tezacaftor/ivacaftor be used for other protein trafficking disorders?
- Are complex diseases representing a spectrum of epimutations?