

All India Institute of Medical Sciences Rishikesh (AIIMSR) Department of Paediatrics

Rishi Vansh

Volume 2, Issue 16, September 2021

Editorial Board

Chief Patron Prof. Ravi Kant (Director & CEO) Patron

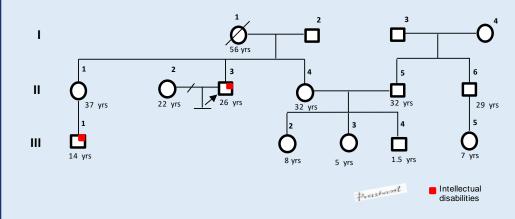
Prof. Manoj Gupta (Dean academic) **President**

Prof. N. K. Bhat (HOD)

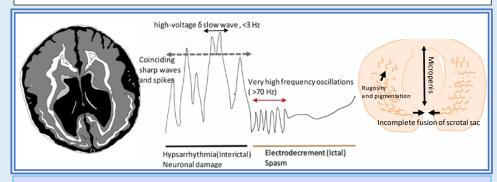
Editor

Dr. Prashant Kumar Verma **Asso. Editor**

Dr. Swathi Chacham


Assi. Editors

Dr. Raksha Ranjan Dr. Vinod Kumar


From the desk of Editor

The Department of Paediatrics is publishing a monthly newsletter for faculty and residents. The newsletter is related to genealogical parlance and deliberate attempt to enhance awareness for genetic disorders with recent updates.

Neurogenetics -IV: Intellectual Disability/ **X-Linked**/ARX related disorders

Lissencephaly + Hypsarrhythmia EEG changes + Undervirilization

ARX (Aristaless-related homeobox- X linked) related disorders involving three overlapping phenotypic findings: Intellectual disability (ID), cortical dysplasia, epilepsy syndrome and undervirilization

Insight:

- 1. What is the prevalence of ARX gene associated learning disability in the community?
- 2. When would you suspect ARX spectrum disorders?
- 3. Is there any genotype and phenotype correlation with particular pathological variant?
- 4. What will be the counseling plan for case III (4)?
- 5. Why, all ARX associated phenotypes are not inherited as XLR?
- 6. What is the impact of ARX gene on pancreatic development?

Plausible tenets:

ARX Gene (Cytogenetic location: Xp21.3, Genomic location: X:25,003,693-25,015,964)

- 12.5 kb, 5 exons, two domains- a C-peptide (or aristaless domain)& the prd-like class homeobox
- Inheritance is by XL & XLR mode: based on the severity of protein truncation & involvement of critical domains which are reliant on protein function in dosage-dependent manner
- A member of the group-II aristaless-related protein family (homeobox-containing gene) → expressed in the nervous system during development → Proprer cell differentiation & migration
- Overall 10 % cases of ID X linked ID in males (33 % FXS + 7.5% ARX + others X linked ID genes- online resources:http://www.ggc.org/xlmr.htm & http://xlmr.interfree.it/home.htm

Tissue/s	Regulatory Function
Pancreas, testes, & skeletal muscles	Cellular differentiation
Brain	Migration & communication of nerve cells by interneurons

Phenotypes	Characteristic features beside intellectual disability (Constant)	Phenotypic Series
DEE1/ Early infantile EE -1/ XL-	Infantile onset progressive refractory seizures	PS308350** - 98 Entries
West syndrome	with specific EEG (hypsarrhythmia)	for DEE*
Hydranencephaly with abnormal	X-linked lissencephaly with abnormal genitalia as	
genitalia	ambiguous genitalia, lethal in males	
Lissencephaly, X-linked 2		PS607432 - 16 Entries
Mental retardation, X-linked 29 &	With or without seizures, normal behavior, course	PS309530 - 49 Entries
others (non-Syndromic)	facial features, obesity	
Partington syndrome	Diverse types of movement disorders	
Proud syndrome	Corpus callosum agenesis, abnormal genitalia	

□- XLR others are XL, *DEE- Developmental and epileptic encephalopathy [Included - early infantile epileptic encephalopathies (EIEE) & different phenotypes as 'early myoclonic epilepsy' (EME), West & Drave syndromes and so on].

**Phenotypic Series Code: Having the data of different genetic loci for a characteristic phenotype (genetic heterogeneity)

Genotype and phenotype correlation			
Mutation/	Premature termination or	Expansion of the polyalanine tract	
Phenotype	nonsense mutations		
Impact on	Brain malformation syndromes	Mental retardation without brain malformations or	
CNS		epileptic encephalopathy	
Syndromes	XLAG & Proud syndrome	DEE1/ Early infantile EE -1/ XL-West syndrome	

- Inter & intra-familiar phenotypic variation in severity even with same mutations
- Severity of phenotypes α loss of function in highly conserved regions

Genetic counselling for case III (2,3,4):

- **Step 1**: Pedigree analysis- Non-syndromic, X linked learning disabilities maternal could be carrier up to 50% (only male affected & no male to female transmission)
- **Step 2**: Confirm the diagnosis in affected case II (3) & case III (1) hospital data analysis
- **Step 3:** Examination of case III (2,3,4), & case II (4), especially detailed examination for male case III (4) check genitals, neurodevelopment assessment & need to follow up six monthly for Neurodevelopment
- **Step 4**: Confirm the disease in symptomatic case, but in asymptomatic case need to confirm carrier status first with proper counselling & psychological evaluation or consultation as per criterion

Effect of pancreas: maintenance of $\alpha\text{-cell}$ identity and quantity, truncated ARX leads to deletion and reduction of $\alpha\text{-cells}$

Homeobox: [homeo- (hō'mē-ō). The same, alike & box - Genes families (have quite similar DNA sequence) in the genome. Transcript the DNA binding proteins those assist early developmental period & regulating morphogenesis by cellular patterning & differentiation mostly through concentration gradients inside the embryonic tissue.

In 1983, William McGinnis noticed this sequence & was named by Walter J. Gehring

Other homeobox genes are also reported for brain malformations:

PAX6- polymicrogyria with aniridia

SIX3- holoprosencephaly EMX2-schizencephaly HEXS1- septo-optic dysplasia

Thought Riveting:

- What could be the possible explanation for abnormal Morphogenesis of the Urogenital Primordia (Malformative DSD) in ARX related disorders?
- What is the exact biomolecular explanation for hypsarrhythmia pattern in EEG?
- Is there any molecular interaction between MAPK signaling and ARX gene?
- What are the environmental factors modulating the plasticity of interneuron?
- **Could it be possible to isolate DSD with ARX mutation?**

Author: Dr Prashant Kumar Verma Reviewer: Dr. Raksha Ranjan