

III III:2 III:3 III:5 II

Characteristic clinical features

Broad Thumb, (Subjective): Increased thumb width without increased dorso-ventral dimension

Corpus callosum: thick layer of *connecting nerve fibers between two halves of the brain, dysgenesis has variable clinical phenotype*

Insight:

- 1. What are the modes of inheritance of MED12 related disorders?
- 2. How does the MED12 protein dysfunction lead to intellectual disabilities(ID)?
- 3. Is there any role of antenatal MRI in case IV:7 in genetic counselling?
- 4. How to approach a case of IDXL with the broad thumb?
- 5. What is the non-syndromic clinical relevance of MED12 gene?

Plausible tenets:

Gene: MED12 (Xq13.1); 25.561 kb & 45 Exons

- Belong to family of Mediator complex
- 35 domains, 54 transcripts (splice variants), 192 orthologues & 1 paralogues

 Protein (2177 AA) subunit of a complex protein structure called mediator complex, having around 25 protein subunits, works as a transcriptional regulator in all genes, especially SHH & Wnt signaling pathways so having a critical role in early embryonic development like cell migration& differentiation.

- Smoothen the communicattion between different transcritional factors including regulatory proteins & RNA polymerase II transcription machinery.

Clinical phenotypes:

- Can be divided in three categories on the basis of inheritance pattern
- A. Phenotype affected male only

FG syndrome type 1	XR	Intellectual disability (ID), Hypotonia,	Broad thumb & halluces, constipation or		
(FGS1) or Opitz-Kaveggia		malformations of corpus callosum,	anal anomalies & behavioral disorders		
Syndrome; OKS		proportionate large head & simple ear			
Lujan-Fryans syndrome	XR		Marfanoid habitus		
(MRXSLF)					
X-linked Ohdo syndrome	XR	Course facies & blepharophimosis			
(XLOS)					
B. Phenotype affected both sexes but female without ID					
Hardikar syndrome (HS)	XD	Coarctation of the aorta, hepatobiliary & GIT malformations(malrotations), oral			
		cleft, pigmentary retinopathy			
C. Variable phenotype in both sexes & female with ID					
Nonspecific ID (NSID)	XI.	ID without specific dysmorphology			

1868- DMD : First clinical reported	IDXL with Broad Thumb: Differential diagnosis		
IDXL	Syndrome	Key finding	
	Keipert syndrome	Cupid's bow upper lip	
1917- MPS II: First	Tonne-Kalscheuer syndrome	Stiff gait & autism	
metabolic disorder	X-linked intellectual	Excess aggression &	
diagnosed as IDXL	developmental disorder-99	joint hyperlaxity	
_	Craniofrontonasal syndrome	Frontonasal dysplasia	
1926-Incontinentia	Simpson-Golabi-Behmel	Pre- and postnatal	
pigmenti: First	syndrome type 1	overgrowth	
reported dominant	Simpson-Golabi-Behmel	Macrocephaly &	
IDXL	syndrome type 2	ciliary dyskinesia	

Role of MRI in counselling with case IV:7

- Beside Corpus callosum dysgenesis, reveals other brain anomalies
- Normal MRI do not exclude the MED12 pathological mutations
- Poor prognostication in case of additional findings in MRI which could be missed in sonography

Non syndromic role of MED12:

- 1. Dysregulation of transcription with somatic mutation of MED12 leads to tumor & also opposition to chemotherapy agents.
- 2. Up to 80 % of somatic mutations have been reported with hormone-dependent tumors such as uterine leiomyomas, phyllodes tumors of the breast, prostate cancer, ovarian cancer & fibroadenomas.
- Role in hematopoietic stem cell (HSC) homeostasis - Inactivation of MED12 in the laboratory leads to bone-marrow aplasia.
- Role in apoptosis with chemotherapy- loss of MED12 prevented apoptosis of cells in Jurkat leukemia.
- Alteration of cellular growth factors such as TGF βR2 by cytoplasmic MED12 -affects drug response.
 - MED12 Somatic mutations are cell line-specific & detailed mechanisms not precise.

Thought Riveting:

- Why "inherited as X-Linked manner" is not used for all X chromosome related genes disorders?
- What are the issues for using a large protein MED12 as an anticancer medicine?
- What is the exact spatial relationship of different proteins in the mediator complex?
- What are the high-risk polymorphic markers of other mediator complex subunit genes in case of NSID?
- Is there any role of cyclopamine in management of intellectual disabilities for FGS1 & MRXSLF?
- Me Does first trimester Zinc prophylaxis have any preventive role in complex congenital malformations in fetus?