



CF transmembrane conductance regulator (CFTR) Protein cellular interaction in lung epithelium

Interaction of Cholera toxin with CFTR

- ANO1-Anoctamin 1, calcium-activated chloride.
- δβγENaC- Epithelial sodium channel complex (subunits SCNN1D, SCNN1B, & SCNN1G).
 - Chloride loss with cholera toxin might be less severe with CFTR mutation; cholera toxin indirectly acts through CFTR protein.

<u>Insight:</u>

- 1. How to calculate the risk for CF in fetus IV:5?
- 2. What is the method for calculating the carrier status of an AR genetic disease in the community?
- 3. Is there any personalized therapy for CF?
- 4. Is there any protective effect of mutant CFTR in the community?
- 5. What is the Genotype-Phenotype Correlation for CFTR?
- 6. What are cystic fibrosis-like syndromes?

Plausible tenets:

Gene: CFTR (7q31.2); 189.36 kb & 27 Exons

- Belongs to ATP-binding cassette (ABC) transporter superfamily
- Transcript length: 6070 bps, 133 domains, and features, thirtyeight splice variants, 218 orthologues, 11 paralogue
- An regulatory anion channel[(1480 AA), Mol. mass: 168,138 D
- Regulate other channels through ATP hydrolysis
- δβγENaC channel Inhibitory & non-inihibitory with αβγENaC
- Overall, maintain pH, ions & water homeostasis
- Regulate HCO3 transportation by SLC4A7
- Role in proper development of Vasa epididymis.

--- Clinical phenotypes of CFTR gene---

Phenotype	MIM	MOI (Mode of	
	number	inheritance)	
Cystic fibrosis	219700	AR (Autosomal	
Congenital bilateral absence of	277180	AR	
vas deferens			
{Bronchiectasis with or	211400	AD	
without elevated sweat			
chloride 1, modifier of}			
{Pancreatitis, hereditary}	167800	AD	
Sweat chloride elevation	-	-	
without CF			
{Hypertrypsinemia, neonatal}	-	-	
(AR- Autosomal recessive, AD- autosomal dominant)			

Genotype-Phenotype Correlations for CFTR			
System wise	Correlation	Other features	
Pancreatitis	Strong	Pancreatic sufficient (PS) or pancreatic insufficient mutations,; behave dominantly (either one or two PS alleles)	
Chronic lung disease	Variable	Various modifiers for phenotype	
CAVD	Strong	Very high penetration rate and least mutation tolerance	
Severity of mutation α phenotype: (mild mutation) Asymptomatic > CAVD> non-classic > classic (severe			

mutation)

Class	Mutation	Phenotype	
Ι	G542X, R553X, W1282X, R11162X,	Severe	
	621– 1G → T, 1717–1G → A, 1078		
	ΔΤ, 3659 ΔC		
II	ΔF508 , Δ1507, Ν1303K, S549N	Severe*	
III	G551D, R560T	Severe**	
IV	**R117H, R334W, G85E, R347P	Mild -	
		Moderate	
V	$3849 + 10 \text{ kbC} \rightarrow \text{T},2789 + 5\text{G} \rightarrow \text{A},$	Mild -	
	A455E	Moderate	
VI	120del123, rPhe580del	Mild -	
		Moderate	
Personalized medicine: *Ivacaftor/lumacaftor or			
combined (\geq 12 years), **Ivacaftor (\geq 2 years)			
Ivacattor [VV 770; N (2.4 Di tort butul E budrovumbonul)			

Ivacaftor [VX-770; N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide]

Syndromes overlap with CF

- Homozygous mutation in the GUCY2C gene (601330) on chromosome 12p12 leads to isolated meconium ileus. GUCY2C, an intestinal transmembrane receptor, regulates chloride secretion through the CFTR.
- αβγENaC channelopathy (Mutations in different subunits epithelial sodium channel (SCNN1) B, A, G- beta, alpha & gamma) lead to bronchiectasis
 with or without elevated sweat chloride 1,2,3(BESC1,2,3)- This group of disorders does not have non-pulmonary components) -previously classified
 as 'nonclassical' cystic fibrosis
- Young Syndrome (279000) azoospermia, obstructive, and chronic sinopulmonary infections (sinusitis-infertility syndrome) clinically overlap with CF but without GIT features & CAVD.

Risk calculation of CF in fetus IV:5- 1st calculate the **carrier** frequency (CF) by Hardy Weinberg Equilibrium: 2pq q2 \approx disease incidence (AR) \approx 1/3600, so q = 1/60 p = (1-q) so, 59/60 \approx 1; SO, 2pq = 2 X 1/60 X1 = 1/30 in the population Risk of CF in IV:5 = 1/2 X 1/30 X 1/4 = 1/240 Protective role of CFTR gene mutation for GIT infection: microbial toxins (Like cholera toxin) work through overactivation of chloride channel, so mutant CFTR protein shows resistance to these toxins. Wilschanski M, Durie PR. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut. 2007 Aug;56(8):1153-63. doi: 10.1136/gut.2004.062786. Epub 2007 Apr 19. PMID: 17446304; PMCID: PMC195522.

Thought Riveting:

- Is it true that cystic fibrosis pathological variants are significantly less in Asian as compared to Caucasians on the ground? If yes, why?
- What are obstacles in using cholera toxins as therapeutic agents for CF?
- What are the newer read-through agents (modified aminoglycosides) for CF & DMD?
- How does the poly T tract of intron 9 affect the CFTR phenotype?
- What is the role of ivacaftor in the treatment of other channelopathies?

Author: Dr Frashant Kumar Verma Reviewer: Dr. Raksha Ranjan