

# All India Institute of Medical Sciences Rishikesh (AIIMSR) Department of Paediatrics

# Rishi Vansh



### Volume 2, Issue 17 October 2021

## **Editorial Board**

Chief Patron Prof. Arvind Rajwanshi (Executive Director) Patron Prof. Manoj Gupta (Dean academic) President Prof. N. K. Bhat (HOD)

#### Editor

Dr. Prashant Kumar Verma Asso. Editor Dr. Swathi Chacham Assi. Editors Dr. Vinod Kumar Dr. Pooja Bhadoria

# From the desk of Editor

The Department of Paediatrics is publishing a monthly newsletter for faculty and residents. The newsletter is related to genealogical parlance and a deliberate attempt to enhance awareness for genetic disorders with recent updates. Hereditary disorders of RBCs – V: Nonmembranopathic Hemolytic Anemia (NMHA)/ nonspherocytic hemolytic anemia (NSHA)



#### <u>Insight:</u>

- 1. Is there any role of splenectomy in the management of NSHA?
- 2. How to investigate a NSHA in low & high resource centers?
- 3. How to do antenatal counselling for NSHA family if genetic loci could not be identified in a proband?
- 4. Which glycogen storage disease also has characteristic NSHA phenotype?
- 5. Which of the NSHA disorder has resemblance of chronic granulomatous disease?

#### **Plausible tenets:**

- **Inherited form for NMHA (36%):** Intrinsic defects in RBCs as enzymopathy **(40%) &** hemoglobinopathy **(60%).** Although, The **most common** type of Inherited hemolytic anemias **(IHAs)** is due to membranopathy- **64%**
- Clinical features: weakness/tiredness, pallor, jaundice, cholelithiasis, hepatosplenomegaly; few have Psychomotor impairment(Plus)
- Stepwise specific investigation process: Peripheral smear (PS for RBC morphology)→HPLC→(RBC enzyme levels→Membrane protein analysis or MPA) OR/ (NGS panel for IHAs )
- Management- Symptomatic; avoid precipitating factors, splenectomy results in significant improvement in the majority of cases

| XL: NHSA |                                                       |                    |                                                                                                        |                                                                                                               |                                               |                         |
|----------|-------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|
| S. No.   | Disease                                               | Gene               | Function                                                                                               |                                                                                                               | Key features                                  | Onset                   |
| 1.       | Phosphoglycerate kinase 1 deficiency<br>(XLR)         | PGK1               | Generate one molecule of ATP                                                                           |                                                                                                               | CNS involvement (50%), hemolytic anemia (60%) | infancy to adult        |
| 2.       | G6PD (XLD)                                            | G6PD               | Synthesis of Ribose 5-Po4 and NADPH                                                                    |                                                                                                               | Induced by drugs or Fava beans, resemble CGD  |                         |
| AR: NHSA |                                                       |                    |                                                                                                        |                                                                                                               |                                               |                         |
| S. No.   | Disease                                               | Gene               | Function                                                                                               | Key features                                                                                                  |                                               | Onset                   |
| 1.       | HK deficiency                                         | HK1                | Catalyzes glucose to glucose-6-<br>phosphat (G-6-P)                                                    | Early infantile onset, Increased Hb F level                                                                   |                                               | At Birth                |
| 2.       | Glucose phosphatase Isomerase deficiency              | GPI                | Catalyzes the interconversion of G-6-<br>PO4 & F-6- PO4                                                | Psychomotor impairment, Spontaneous hemolytic crises                                                          |                                               | in utero or at<br>birth |
| 3.       | Due to defect in porphyrin metabolism                 | ??                 | ??                                                                                                     | increased amount of porphobilinogen & delta-aminolaevulinic acid in Urine, chronic jaundice                   |                                               | Infancy                 |
| 4.       | Adenylate Kinase Deficiency                           | AK1                | energy metabolism and homeostasis                                                                      | Onset since birth, rapidly progressive hemolysis, intellectual disabilities in some                           |                                               | 3 to 8 years            |
| 5.       | Glycogen storage disease XII                          | ALDOA              | Catalyzes the reversible conversion of<br>F-1,6-bisPO4 to glyceraldehyde 3- PO4<br>& di-OH-acetone PO4 | Dysmorphic features, delayed puberty, myopathy, Mental retardation                                            |                                               | Infantile               |
| 6.       | Glycogen storage disease VII                          | PFKM               | Do irreversible change from F-6- PO4<br>to F-1,6- bisPO4                                               | Gout, variable severity, Myoglobinuria,                                                                       |                                               | Early<br>childhood      |
| 7.       | Gamma-glutamylcysteine synthetase deficiency          | GCLC               | Rate-limiting enzyme in glutathione<br>biosynthesis.                                                   | Myopathy, Late-onset spinocerebellar degeneration, Peripheral neuropathy                                      |                                               | Early<br>childhood      |
| 8.       | Glutathione synthetase deficiency                     | GSS                | Detoxification, antioxidant &<br>membrane transport                                                    | Severe form allied with neurological features                                                                 |                                               | Early<br>childhood      |
| 9.       | Triosephosphate isomerase deficiency                  | TPI1               | Catalyzes the interconversion of DHAP<br>& glyceraldehyde-3-phosphate                                  | Variable neurodegenerative disease, mixed motor neuron<br>involvement, Increased susceptibility to infections |                                               | Infantile               |
| 10.      | Uridine 5-Prime Monophosphate<br>Hydrolase Deficiency | NT5C3A             | Catalyze- dephosphorylation of<br>nucleoside 5'-monoPO4                                                | Hemoglobinuria & excess loss of iron in urine                                                                 |                                               | Early<br>childhood      |
| 11.      | Erythrocytosis, Familial, 8; ECYT8                    | BPGM               | Regulating hemoglobin oxygen affinity through 2,3-BPG                                                  | Increased oxygen affinity of Hb, both observed polycythemia &<br>hemolytic anemia                             |                                               | Late onset              |
| AD: NHSA |                                                       |                    |                                                                                                        |                                                                                                               |                                               |                         |
| S. No.   | Disease                                               | Gene               | Function                                                                                               | Key feat                                                                                                      | ures                                          | Onset                   |
| 1.       | Heinz body anemias                                    | HBA1,<br>HBA2, HBB | Instructions for making alpha-globin<br>protein of Hb                                                  | Heinz bodies in erythrocytes after splenectomy, Heat-labile Hb                                                |                                               | Late onset              |
| 2        | Red cell phospholipid defect with hemolysis           | ??                 | ??                                                                                                     | Hemolysis on exposure to drugs and possibly viruses                                                           |                                               | ??                      |
| 3.       | Adenosine triphosphatase deficiency                   | ??                 | ??                                                                                                     | Infreque                                                                                                      | nt hemolytic episodes, ATP-ase deficiency     | ??                      |

Next generation sequencing (NGS): High throughput DNA sequencing methodology, Sequencing techniques beyond the first generation (Sanger sequencing based). 2<sup>nd</sup> generationsequencing by hybridization or synthesis (SBS), Ion Torrent, pyrosequencing; 3<sup>rd</sup> generation – Iong SMRT (Single Molecule Real Time); 4<sup>th</sup> generation-apply nanopore systems

# Genetic Counseling for II:3 case with inconclusive NGS test reports of II:1 & II:3

- 50 % chance for HA in the case II:3
- Redefine the clinical phenotype, reevaluate the lab reports subclassify the RBCs defects
- Explain: IHAs are not the recommended genetic disease that need antenatal testing EXCEPT very severe forms or involvements of other systems (Plus)
- Plan functional study of RBCs (PS, HPLC, Enz and MPA) in **II:1 & II :3** if irrefutable finding
- **Cordocentesis** (after taking consent) and find out the same finding (Look for **maternal contamination**)
- In case of negative functional study:
  - Linkage study could be tried but has its own limitations (Need to discuss first)

Heinz bodies (Scanning electron microscopy image) (Heinz-Erlich bodies): denatured precipitated non function intracellular inclusions of Hb.



#### Dr. Robert Heinz: 1890 discovered Heinz body

Dr. Carson et al: discovered G6PD enzyme in 1956- the commonest enzymopathy

Valentine et al.: discovered Pyruvate kinase (PK) deficiency in 1961- the commonest enzyme-related glycolytic defect

#### Thought Riveting:

What could be the precipitating factor for neonatal death with selected cases of GPI mutations?

- How does Hb F increase with hexokinase deficiency?
- What is the possible phenotypic modifier for mutations in the RBCs pyruvate kinase?
- What are the technical issues & standard guidelines of selecting a birth defect with hereditary enzyme deficiency for enzyme replacement therapy?
- Main a stage of embryonic development, HK1 gene facilitates neural tissue growth & development?

Author: Dr. Prashant Kumar Verma, Dr. Vinod Kumar Reviewer: Dr. Raksha Ranjan