Renal Physiology – Introductory Lecture

Dr Sunita Mittal

Learning Objectives

To understand:

- 'Physiologic' freedom
- Components of Urinary/Excretory/Renal system
- External features & location of kidneys & applied aspects.
- Inner structure of kidneys

Introduction to Renal system

Kidneys play very imp role to keep

Constancy of 'internal milieu' & allow 'physiologic freedom'

Physiologic freedom is possible as kidneys can modulate the processes of excretion according to need.

Excretory System/Urinary System-components

Excretary System/Urinary System-Structures and function

- Kidneys
- Urinary tract

Urinary bladder

Urethra

External structure of Kidneys

Kidneys –paired, reddish, bean shaped organs,

Location of Kidneys-Located retroperitoneally

L: Liver, P: Pancreas, LS: Lesser sac, S: Spleen, C: Colon, V: Inferior vena cava, A: Abdominal aorta, D: Duodenum, RK: Right kidney, LK: Left kidney

Applied aspect

if these lower ribs are fractured (#) by trauma — they can puncture the kidneys & cause major damage.

Applied: 'Loin to Groin' Pain

Applied: Tenderness of Costovertebral angle (CVA)

Causes

- renal stone
- pyelonephritis
- perinephric abscess

Copyright © 2009 Wolfers Kluwer Health | Lippincoff Williams & Wilkins

Applied: Tenderness of Costovertebral angle (CVA)

*Because the kidney is directly anterior to this area, tapping disturbs the inflamed tissue, causing pain.

Ulnar Surface

Inner structure of kidney

- A frontal section through kidney shows two distinct regions:
- 1. Superficial (outer) renal cortex
- 2. Deep (inner region) is called renal medulla

Together, renal cortex & renal pyramids constitute renal parenchyma.

Inner structure of kidney - renal lobe

Inner structure of kidney - Cortex & Medulla

Functional Configuration of Kidn ~~

Nephrons

'papillae of renal pyramids'

Minor (8-9) and Major (3-4) calyces)

Renal pelvis (pelv- basin)

Out through ureter

urinary bladder.

Renal hilum and renal sinus

Renal hilum

Renal sinus

Blood supply to kidney - nephrons

Blood supply to kidney - Nephrons

Salient features of the lecture

As we know morphological and anatomical characteristics —we can relate these to functioning of kidney

Components of excretory system:

Location-

Loin to Groin Pain, Tenderness of Costovertebral angle / Renal angle

Two distinct regions in kidney...

The renal lobe

Nephrons →

Aorta → Renal Artery →

Self Assessment

Urinary tract actually includes

- 1. Ureter
- 2. Ureter and pelvis
- 3. Calyces, pelvis and ureter
- 4. Calyces and ureter

In kidney, pyramids represent:

- 1. Cortex
- 2. Medulla
- 3. Cortex and medulla
- 4. Renal column

Kidneys are situated at this vertebrae level:

- 1. L₁-L₄
- 2. L₂-L₄
- 3. T₈-T₁₂
- 4. T₁₂-L₃

Afferent Arteriole is a branch of

- 1. Segmental artery
- 2. Arcuate artery
- 3. Interlobar artery
- 4. Cortical radiate artery

Thank you