Adrenal Medullary Hormones

DR JAYANTI PANT

Secretions of the gland

 Catecholamines: Epinephrine Nor-epinephrine Dopamine

 Adrenal medulla is a sympathetic ganglion in which the post ganglionic neurons have lost their axons and become secretory cells

Catecholamines

PNMT is found in brain and adrenal medulla

Adrenal PNMT is induced by glucocorticoids

 After hypophysectomy, epinephrine concentration decreases

 In 21 β-hydroxylase deficiency adrenal medulla is dysplastic

Catecholamines

- 95% dopamine and 70% Nor-epinephrine and epinephrine is conjugated to sulfate
- On standing the levels of free norepinephrine increases by 50-100%
- After adrenalectomy, plasma norepinephrine levels remain unchanged but free epinephrine level falls

- Catecholamines are stored in granules with ATP
- Granules also contain chromogranin A, opioid peptides
- Adrenomedullin is also found

Catecholamines

Dopamine	D ₁ , D ₅	†Cyclic AMP	
	D2	+Cyclic AMP	†K ⁺ , ±Ca ²⁺
	D ₃ , D ₄	+Cyclic AMP	
Norepinephrine	<u>~</u> 1	ŧIP ₃ , DAG	4K ⁺
	<u>∞</u> 2	+Cyclic AMP	†K ⁺ , ₊Ca ²⁺
	β1	†Cyclic AMP	
	B ₂	+Cyclic AMP	
	B ₃	+Cyclic AMP	

Regulation of catecholamines

- Reduced in sleep
- Increased in emergency situations
- W.B.Cannon called it "The emergency function of sympathoadrenal system"
- Drugs
- NE is increased by emotional stresses with which the individual is familiar
- Epinephrine rises in stresses due to unexpected situation

Effects of Catecholamines

- Increases glycogenolysis in liver and skeletal muscles
- Increases insulin and glucagon secretion by β- adrenergic mechanisms
- Decreases insulin and glucagon secretion by α- adrenergic mechanisms
- Increases FFA mobilization
- Increases plasma lactates
- Stimulates metabolic rate

Effects of Catecholamines

- NE and Epinephrine both increase rate and force of myocardial contraction
- Increases myocardial excitability
- Can lead to extrasystoles and arrythmias
- NE produces vasoconstriction
- Epinephrine causes vasodilatation

ADRENOCEPTORS a1 α2 P_2 Inhibition of Vasodilation Tachycardia Vasoconstriction norepinephrine release **Slightly decreased** Increased lipolysis **Increased** peripheral peripheral resistance resistance Inhibition of acetylcholine Increased myocardial Bronchodilation release Increased blood pressure contractility Increased muscle Inhibition of and liver glycogenolysis Increased release **Mydriasis** insulin release of renin Increased release Increased closure of of glucagon internal sphincter of

the bladder

 Relaxed uterine smooth muscle

Effects of Catecholamines

- Catecholamines increase alertness
- Increases metabolic rate due to vasoconstriction and lactate oxidation
- When injected increases potassium levels and later decreases
- Dopamine causes renal and mesenteric vasodilatation
- Elsewhere DA causes vasoconstriction
- DA has positive inotropic effect on heart
- DA is useful in treatment of shock